

Munters is the world leader in dehumidification

Munters is the largest manufacturer of dehumidifiers in the world. Since developing the first desiccant dehumidifier in the late 1930's, Munters has continued to innovate in the fields of dehumidification and energy recovery. Our long history and extensive expertise in dehumidification makes us the premier choice for your dehumidification needs.

atatoriums have historically posed a difficult environment for the conventional HVAC system. The continuous moisture load swimming pools generate challenges the mechanical system and creates multiple opportunities for structural damage. The combination of humidity and chlorine not only attack the building, but also provide a breeding ground for mold and bacteria which can jeopardize occupant health and comfort. Munters offers a variety of systems in several different sizes, configurations, and thermodynamic process options to meet the customer's needs.

Protect the building and its occupants

An efficient HVAC system must function properly during all seasons and be capable of handling all possible indoor and outdoor air conditions—even those abnormal swings. The system should provide precise humidity control because the evaporating water from the pool is continuously released into the air. and must be constantly removed. Space air condition and water temperature must also be balanced for occupant comfort based on the type of pool . (see chart at right).

Building Design

It is important to start with the correct envelope construction to avoid significant problems during the life of the building. A proper vapor barrier is needed to keep moisture from being trapped in the buildings walls and roof assembly. Additionally care should be taken with regard to the window quantity, design and installation, as well as the wall construction detail and its insulation. Condensation on building elements during low outdoor air temperatures should be carefully guarded against. Please refer to the ASHRAE handbooks and The Humidity Control Design Guide published by ASHRAE for more information on this subject.

FROM ASHRAE

The recommended conditions for pools as indicated in the ASHRAE Applications Handbook and Humidity Control Design Guide:

Type of Pool	Air Temp °F	RH%	Water Temp °F
Recreational	75 to 85	50 to 60	75 to 85
Therapeutic	80 to 85	50 to 60	85 to 95
Competition	78 to 85	50 to 60	76 to 82
Diving	80 to 85	50 to 60	80 to 90
Whirlpool/Spa	80 to 85	50 to 60	97 to 104

Introduce Outside Air into the Building

Outside air must be brought into the space to dilute the chlorine that has evaporated from the pool and to provide fresh air for the occupants.

FROM ASHRAE

Standard 62.1 - 2004 calls for:
0.48 CFM PER SQUARE FOOT OF POOL AND DECK AREA &
7.5 CFM PER PERSON IN THE SPECTATOR AREA

In order to make room for this outside air, mechanical exhaust is required. This exhaust should exceed the outdoor air quantity to maintain negative air pressure in the pool area. Pay special attention that the airflow moves in the correct direction. This ensures that humidity and odors will not transfer into adjacent spaces, and also keeps high humidity out of the wall cavities to minimize the potential for condensation.

Prevent Condensation

High humidity and condensation on the building structure can cause significant damage. A detailed dew point analysis of the building is required to eliminate condensation both during initial design and through the end of construction. Thermal bridges in the walls and windows should be analyzed and reviewed carefully to avoid building damage.

Calculate the Loads

TOTAL HUMIDITY LOAD = OA HUMIDITY LOAD + INTERNAL HUMIDITY LOAD + POOL LOAD

Pool Evaporation Rate

vaporatio	n Data	Equation	
FROM ASHF		ICATIONS HANDBOOK	

POOL LOAD = 0.1 X POOL AREA X △VAPOR PRESSURE X USE FACTOR

Where:

Load = the evaporation rate of the pool (lbs/hr) Pool Area = the surface area of the water (sq. ft.) Δ Vapor Pressure = the difference in vapor pressure of the air and water (in of Hg) Use factor = the occupancy factor from ASHRAE.

Vapor Pressure (Inches of Mercury)

Fluid Type	Relative Humidity		Temperature °F												
		78	80	82	84	86	88	90	92	94	96	98	100	102	104
Water	100%	0.967	1.033	1.103	1.176	1.254	1.336	1.423	1.515	1.612	1.714	1.821	1.935	2.054	2.180
Air	50%	0.484	0.517	0.551	0.588	0.627	0.668								
	60%	0.581	0.620	0.662	0.706	0.753	0.802								

Outside Air Humidity Load

FROM ASHRAE APPLICATIONS HANDBOOK

OA Humidity Load Equation: use ASHRAE design dew point conditions:

OA HUMIDITY LOAD = 0.0057 X OA X △HUMIDITY RATIO

Where:

Load = the humidity load of the outside air (lbs/hr) OACFM = Ventilation Air Quantity (cfm) ΔHumidity Ratio = the difference in absolute humidity of the outside air and the space (grains/lb)

Properly calculating the internal and external loads of the facility is a critical step in designing a natatorium. The HVAC equipment is sized based on load calculations and the type of facility being constructed. An indoor swimming pool has a remarkable chance of experiencing moisture problems, but with accurate load calculations of the pool evaporation rate, peak outside air loads, and the internal load in the space you can successfully design a healthy and enjoyable natatorium.

Internal Humidity Load

Type of Pool

Fitness Club / Condo

Therapy / Elderly Swim

Institutional / School

Spas and Whirlpools

Public Pools

Residential

Hotel

Use Factor

0.5

0.65

0.65

0.8

0.8

1.0

1.0

People are an internal load to the space and their activity should be considered in the calculation. Use the chart below to determine the activity load per hour and add to the pool evaporation load.

Activity per hour	btu/hr	lbs/hr
Seated at Rest	105	0.10
Seated Very Light Work	158	0.15
Seated, Light Work	210	0.20
Walking, Standing	252	0.24
Moderate Dancing	546	0.52
Walking Briskly w/Loads	630	0.60
Light Exercise	872	0.83
Medium Athletic Activity	966	0.92
Athletics	1092	1.04

3

Ductwork should be aluminum, painted galvanized, 300 series stainless steel or lightweight corrosion resistant fabric. Munters offers DryFlo Ducting. DryFlo ducting is cylindrical tubes constructed of a durable fabric that uniformly disperses air into the space. (*See Munters Distribution System illustration above*)

Choose pool technology best suited for that region

Weather is a critical component of the building load. When climate is hot and dry, it presents different challenges for a HVAC system than when it is hot and humid. Differing outdoor conditions require specific performances from dehumidification and air conditioning systems. The same type of system throughout the country will not efficiently meet the needs of different area and different climate requirements.

Energy recovery and mechanical dehumidifier requirements are significantly different based on outdoor conditions. In the west, the outdoor condition is generally much lower than the space condition. Outdoor air can naturally be used for indoor dehumidification, and if provided with an efficient energy recovery device, it can be done at significantly

reduced operating costs. In the east, outdoor air can be used part time for dehumidification and the mechanical dehumidification cycle is only needed for the higher ambient humidity. With colder temperatures in the north, energy recovery for winter operation is easily justified. Depending on the priorities of the user, a significantly different system may be appropriate to maximize energy efficiency.

Munters Offers Different Solutions

Four different types of systems are available to meet both the difficult requirements of the natatorium and the diverse climates these buildings may experience. These different solutions can be optimized to provide the best solution from a first cost, life cycle cost, and sustainability perspective. They allow for the optimization of energy savings and performance.

Selecting the Right System

Where is the building located and what is the local climate?

Hot and Humid: Southeast U.S. Humid, but with cold winter climate: Northeast U.S. Hot and Dry: Southwest U.S. Dry, but with cold winter climate: Northwest U.S. What are the priorities of the system required?

- 1. Reliability
- 2. First Cost
- 3. Operating Cost
- 4. Increased Ventilation during most of the year

What is the system size requirement?

Small - < 150 lbs/hr Medium - > 150 lbs/hr, < 300 lbs/hr Large - > 300 lbs/hr

System Types and Features

	Wringer Pool	DryCool	Pool Fresh Air	Pool Desiccant
Climate	Southeast, Northeast, Southwest, Northwest	Southeast, Northeast	Southwest, Northwest	Southeast, Northeast
Priority	Reduced compressor runtime for enhanced reliability, Low operating cost, Increased ventilation	Low first cost	Eliminated compressor runtime for enhanced reliability, Low operating cost, Increased ventilation	Reduced compressor runtime for enhanced reliability
System Size	Small, Medium, Large	Small, Medium	Small, Medium, Large	Medium, Large

The system features listed do not outline the extent of the product line availability, rather they outline the features of the systems in competitive environments. See the specific system description on the following pages to see the available capacities of each product.

Heat Pump Option

Wringer Pool and Pool Fresh Air systems are available with the heat pump option to heat the pool water. This options adds an evaporator coil to the exhaust air stream as it leaves the unit to recover the last amount of heat from the building exhaust. This allows the heat pump system to efficiently heat the pool water all year long. The dehumidification cycle is not required to operate and the system is sized based on the energy available in the exhaust air stream. The heat pump is also configurable to provide air heating in the winter whenever sufficient heat is available from the exhaust air stream, and providing very efficient heating of the outside air after it has been preheated by the sensible heat exchanger.

5

Wringer Pool

Products Description

The Wringer Pool dehumidifier utilizes energy recovery to provide heat recovery in the winter and pre-cool/reheat during the summer. The combination of mechanical dehumidification and outside air dehumidification provides an extremely efficient and reliable dehumidification system. The energy derived from the cooling coils is used to reheat the supply air through a refrigerant reheat coil. During high outdoor humidity the cooling coil acts as the dehumidifier, using the heat exchanger to minimize energy. When the humidity outside is lower than the desired space condition, the unit brings in more outside air to meet the dehumidification load without the need for the cooling coil or compressor run hours, while the heat exchanger recovers the heat from the exhaust air stream to minimize the heating requirement. The unit modulates the outside air to the minimum position during very cold conditions to minimize energy requirements. In addition, a heat pump option can be added to the exhaust air stream to provide pool water and/or supply air heating to increase overall unit efficiency.

Wringer Capacity Chart

Unit	CFM	Pool Size (sq. ft.)	Dimensions (in.) L x W x H	Weight (lbs.)
WR 04	4,000	1,000 - 1,500	84 x 66 x 192	4,700
WR 06	6,000	1,500 - 2,250	84 x 66 x 192	7,400
WR 08	8,000	2,000 - 3,000	84 x 66 x 192	9,000
WR 12	12,000	3,000 - 4,500	100 x 74 x 216	12,700
WR 18	18,000	4,500 - 6,750	132 x 78 x 234	22,000
WR 24	24,000	6,000 - 9,000	144 x 98 x 252	27,000
WR 30	30,000	7,500 - 11,000	144 x 114 x 276	32,000
WR 40	40,000	10,000 - 15,000	144 x 146 x 312	39,000
WR 50	50,000	12,000 - 18,000	144 x 156 x 396	44,000

DEHUMIDIFICATION: Natatorium Application Guide

6

Wringer Airflow & Schematic

St	ate	Su	mm	er	Winter		
Point		CFM	°F	Grains	CFM	°F	Grains
A	Return	10,000	84	104	10,000	84	77
В	Post Cooling Coil	9,000	93	65	2,000	-13	2
С	Post Desiccant Wheel	9,000	89	65	2,000	55	4
D	Outside Air	9,000	70	65	2,000	55	4
Е	Supply Air	9,000	70	65	9,000	105	61

Product Features

• 2" double wall casing

- Sensible counter-flow, cross-flow, and heat pipe heat exchangers with up to 88% efficiency
- Simple dehumidification and energy recovery modes for easy maintenance and control
- Outside air dehumidification mode for reduced compressor run hours
- Increased ventilation throughout many operating hours
- Built in building exhaust fan to maintain negative pressure
- Packaged DX, split system DX, water cooled DX & chilled water options
- DDC microprocessor controls option
- Option for 100% outside air during purge mode
- Stainless steel drain pans
- Heat pump air and water heating available as option
- ETL listed

DryCool Pool

Product Description

The DryCool pool dehumidifier provides energy efficient dehumidification in a small packaged product at low cost. Condenser heat is recovered from the direct expansion refrigeration system to provide the reactivation energy for the desiccant dehumidification process. The cooling energy of the refrigeration system is used to cool and dehumidify the air prior to entering the desiccant wheel. The hybrid refrigerantdesiccant system provides an efficient dehumidifier by eliminating the overcooling required with a refrigeration only based dehumidifier. The system uses the reactivation fan as the exhaust air fan to maintain negative pressure in the space while further enhancing efficiency and minimizing the unit footprint and cost.

Dry

F

ryCool Poo	yCool Pool Capacity											
Unit	Ma OA	aximum C Return	FM Total	Minimum Exhaust	Maximum Exhaust	Tons	Dehumid Ibs/hr	Dimensions L x W x H	Weight Pounds			
HCU-V 1005	1,000	1,200	2,200	250	1,200	5	40 lbs/hr	58 x 43 x 61				
HCUc-2410	1,350	2,400	3,750	500	1,500	10	70 lbs/hr	178 x 65 x 57	3,500			
HCUc-3412	2,250	3,400	5,650	833	2,500	12	90 lbs/hr	178 x 65 x 57	3,500			
HCUc-3415	2,700	3,400	6,100	1,000	3,000	15	105 lbs/hr	178 x 65 x 57	3,500			
HCUc-4015	2,700	4,000	6,700	1,000	3,000	15	115 lbs/hr	193 x 65 x 72	4,250			
HCUc-4020	2,700	4,000	7,600	1,333	4,000	20	145 lbs/hr	193 x 65 x 72	4,250			
HCUc-6020	3,600	6,000	9,600	1,333	4,000	20	160 lbs/hr	226 x 86 x 70	5,250			
HCUc-6030	5,400	6,000	11,400	2,000	6,000	30	225 lbs/hr	226 x 86 x 70	5,250			
HCUc-8030	5,400	8,000	13,400	2,000	6,000	30	240 lbs/hr	249 x 96 x 86	7,850			
HCUc-8040	7,200	8.000	15,200	2,667	8,000	40	315 lbs/hr	249 x 96 x 86	7,850			

Capacity based on 82F 60% RH space condition

St	ate	Su	mm	er	Winter		
Point		CFM	°F	Grains	CFM	°F	Grains
А	Return	6,000	82	100	6,000	82	100
В	Post Cooling Coil	6,000	51	56	6,000	82	100
С	Post Desiccant Wheel	6,000	69	34	6,000	82	100
D	Outside Air	4,000	95	120	4,000	20	10
Е	Supply Air	10,000	79	68	10,000	90	64

Product Features

- Foam injected 2" double wall casing
- Desiccant enhanced process for lower connected tonnage and lower operating cost
- Packaged DX, split system DX, water cooled DX and chilled water options
- Coated cooling coils and other critical components
- DDC microprocessor controls
- Option for 100% outside air during purge mode
- Stainless steel drain pans
- ETL listed

Pool Fresh Air

Products Description

The Pool Fresh Air unit is an enhanced energy recovery system. The core of the unit is an efficient sensible energy recovery heat exchanger. The chart below shows that outdoor air can be used to provide dehumidification for natatorium environments effectively up to approximately 60°F dew point. The outdoor air supply can be modulated to provide the correct dehumidification capacity and to not over-dehumidify when possible. In western or similar climates, the 60°F dew point condition is rarely exceeded. This allows the system to maintain the desired space humidity most of the time with no need for mechanical dehumidification. On occasion when it is exceeded the resultant increase in space humidity is small. Temperature and humidity in the space will exceed the design condition for a short period of time, but the trade off is a simplified unit design with no refrigeration system. Cooling can be provided with indirect evaporative cooling, enhancing the system performance and efficiency. Direct evaporative humidification can be added to the supply air. This will minimize the evaporation rate of the pool and the chemical requirements for pool maintenance. Simple, low operating cost, low maintenance, and improved air quality through increased ventilation make the Pool Fresh Air unit an attractive option for natatoriums.

Outdoor Air Dehumidification

Outside Dew Point	OA CFM	lbs of H ₂ 0	OA CFM	lbs of H ₂ 0	OA CFM	lbs of H ₂ 0
Temp. °F		Removed		Removed		Removed
0	5,000	302	10,000	605	20,000	1,210
5	5,000	297	10,000	595	20,000	1,189
10	5,000	290	10,000	581	20,000	1,162
15	5,000	282	10,000	564	20,000	1,128
20	5,000	271	10,000	543	20,000	1,085
25	5,000	258	10,000	517	20,000	1,034
30	5,000	242	10,000	484	20,000	968
35	5,000	223	10,000	447	20,000	894
40	5,000	202	10,000	404	20,000	808
45	5,000	177	10,000	354	20,000	707
50	5,000	147	10,000	293	20,000	587
55	5,000	111	10,000	222	20,000	444
60	5,000	69	10,000	138	20,000	276
65	5 000	10	10,000	30	20.000	78

Note: Based on space condition of 82°F, 60% RH.

8

State	Su	ımn	ner	Winter			
Point	CFM	°F	Grains	CFM	°F	Grains	
A Return	10,500	84	104	10,500	84	77	
B Post Cooling Coil	2,000	95	118	2,000	0	4	
C Post Desiccant Wheel	7,000	61	80	2,000	0	4	
D Outside Air	7,000	68	80	2,000	71	4	
E Supply Air	10,000	76	80	10,000	98	55	

Product Features

- 2" double wall casing
- Optional indirect evaporative cooling to provide cooling during high ambient temperatures
- Optional direct evaporative cooling to minimize pool evaporation during low dew point conditions
- Sensible counter-flow, cross-flow, and heat pipe heat exchangers with up to 88% efficiency
- Simple dehumidification and energy recovery modes for easy maintenance and control
- Outside air dehumidification mode eliminating compressors
- Increased ventilation throughout many operating hours
- DDC microprocessor controls option
- Option for 100% outside air during purge mode
- · Heat pump air and water heating available as option
- ETL listed

Pool Desiccant

Products Description

The Pool Desiccant unit utilizes a silica gel desiccant dehumidification wheel with gas fired reactivation to provide dehumidification without the need for compressorized refrigeration. Cooling coil operation is only required to provide temperature reduction in the space during high ambient temperatures. The wheel turns at a slow 0.1 rpm minimizing maintenance. The desiccant process heats and dehumidifies the supply air reducing the heating required in the heating mode. The effect of this process provides low relative humidity inside the unit and therefore reduced corrosion. Great flexibility and reliability are provided in a packaged large capacity unit.

DDS Airflow & Schematic

St	ate	Sı	ımm	er	Winter			
Pc	pint	CFM	°F	Grains	CFM	°F	Grains	
A	Return	10,000	80	100	10,000	82	100	
В	Post Desiccant Wheel	10,000	119	54	10,000	82	100	
С	Post Heating Coil	10,000	119	54	10,000	125	100	
D	Post Cooling Coil	10,000	65	54	10,000	125	100	
Е	Outside Air	5,000	95	120	5,000	20	10	
F	Supply Air	15,000	75	76	15,000	90	70	

Product Features

• Foam injected 2" double wall casing

- Desiccant dehumidification process for lower connected tonnage and lower compressor run hours
- Low relative humidity during dehumidification process for reduced corrosion
- Packaged DX, split system DX, water cooled DX and chilled water options
- Coated cooling coils and other critical components
- DDC microprocessor controls option
- Option for 100% outside air during purge mode
- Stainless steel drain pans
- ETL listed

Unit	Maximum CFM OA Return Total		Minimum Exhaust	Maximum Exhaust	Tons	Dehumid Ibs/hr	Dimensions L x W x H	Weight Pounds	
DDS 20	10,000	10,000	12,000	250	10,000	100	250 lbs/hr	219 x 80 x 70	6,500
DDS 30	30,000	30,000	30,000	500	15,000	200	350 lbs/hr	219 x 96 x 101	8,500
DDS 40	50,000	50,000	50,000	1,000	25,000	300	500 lbs/hr	280 x 134 x 101	10,500

Pool Desiccant Capacity Chart

9

Economic Evaluation and Life Cycle Cost

Munters has software tools to analyze the operating cost of each system. Unit selection and cost data are inputted with design parameters, local weather data, and energy costs. The output is \$5,000 vs. \$16,000 annual energy cost, annual energy savings, and simple payback.

Operating Cost of Munters Pool Fresh Air Product

Locatio	on CFM			Chicago, IL	Change O Heat Reco	ver Dew Poi	nt veness	58.3 65.0				Cooling Summe	J Equipment C.O. The Building Load	.P 3 119 MBH
Requir	ed Supply	∆ir Hur	nidity Ratio	0.0121	Cooling F	uel Cost		\$0.100/k	wh-\$9 77/Millic	n BTI L of Coc	ling Input	Winter	Building Load	189 MBH
Summa	or Outside	Air		5,000	Cost of He	ating Fuel		\$1.00/1.0	00 000 BTU	11 B10 01 000	inig inipat	Max Fy	anoration Rate	198 #/Hr
Doturn	Air Tomp	raturo		0,000	Efficiency	of Fuel Con	version (Heatin	a) 80	00,000 010					50.2 °F
Roturn	Air Belati		idity	60		ir CFM at Ch	ange Over	12 000						00.2 .
netuin	All Helati	ve man	Total	00	outoride A		Condonoor	Peruired	No Hoot	Cost			Condonoor	
Dry Bulb	Temp. MCWB*	DP	Hours.* at Condition	Outside Air	Dehumid Coil Tons	Dehumid Coil Cost	Heat Available BTUH	Supply Air Temp.	Supply Air Temp.	to Heat Supply Air	Condens Rehe Crea	ser Air eat lit	Water Heat Credit	Dollars Spent Total
120	75	63.3	0	5,000	27.64	\$0	414,652	73.2	74.1	\$0	\$0		\$0	\$0
97	76	67.6	6	5,000	31.03	\$22	465,418	74.3	74.1	\$0	\$0		\$1.66	\$20.16
92	74	66.4	58	5,000	28.99	\$197	434,864	75.4	74.1	\$2	\$2		\$16.06	\$181.01
87	72	65.4	165	5,000	27.11	\$524	406,969	76.5	74.1	\$11	\$1	1	\$45	\$478.63
82	70	64.5	324	5,000	25.38	\$964	380,774	78.3	74.1	\$38	\$38	3	\$89.70	\$874.24
77	67	62.0	487	5,000	20.81	\$1,188	312,183	79.8	74.1	\$75	\$75	5	\$114.66	\$1,073.22
72	64	59.6	681	5,000	16.54	\$1,320	248,038	82.0	74.1	\$147	\$14	7	\$64.29	\$1,255.49
67	61	57.4	759	10,001	0.00	\$0	0	82.6	79.4	\$66	\$0		\$0	\$66.00
62	57	53.7	700	7,525	0.00	\$0	0	83.2	79.4	\$72	\$0		\$0	\$72.06
57	52	48.0	604	5,729	0.00	\$0	0	83.7	79.5	\$70	\$0		\$0	\$69.60
52	47	42.3	581	4,766	0.00	\$0	0	84.3	79.5	\$76	\$0		\$0	\$76.04
47	43	38.7	565	4,380	0.00	\$0	0	84.9	79.3	\$86	\$0		\$0	\$85.61
42	38	32.8	572	3,934	0.00	\$0	0	85.5	79.2	\$97	\$0		\$0	\$96.78
37	34	29.9	725	3,756	0.00	\$0	0	86.1	79.0	\$138	\$0		\$0	\$138.10
32	30	27.0	869	3,612	0.00	\$0	0	86.6	78.8	\$184	\$0		\$0	\$183.99
27	25	21.3	589	3,392	0.00	\$0	0	87.2	78.7	\$136	\$0		\$0	\$135.66
22	21	18.9	371	3,322	0.00	\$0	0	87.8	78.5	\$94	\$0		\$0	\$93.54
17	16	13.3	231	3,194	0.00	\$0	0	88.4	78.4	\$63	\$0		\$0	\$62.78
12	11	7.6	164	3,098	0.00	\$0	0	89.0	78.2	\$48	\$0		\$0	\$47.88
7	6	1.6	115	3,026	0.00	\$0	0	89.5	78.0	\$36	\$0		\$0	\$35.94
2	1	-4.7	89	2,971	0.00	\$0	0	90.1	77.8	\$30	\$0		\$0	\$29.67
-3	-3	-81.9	93	2,843	0.00	\$0	0	90.7	77.8	\$33	\$0		\$0	\$32.64
				• • •								Annua	Energy Expense	\$5,109.04

Operating Cost of Conventional Refrigeration-Based Pool Dehumidifier as Comparison

				01.1	Here Berry			-					Equipment 0.0	
Locatio	on			Chicago, IL.	неат несо	very Effectiv	veness	0				ooiing	Equipment C.O.	
Supply	CFM			20,000	Cooling Fu	uel Cost		\$0.100/k	wh=\$9.77/Millio	n BTU of Coo	ling Input	Summe	r Building Load	180 MBH
Requir	ed Supply	Air Hur	nidity Ratio	0.0121	Cost of He	eating Fuel		\$1.00/1,0	00,000 BTU		N N	Ninter	Building Load	300 MBH
Min Ou	ıtside Air			5,000	Efficiency	of Fuel Con	version (Heating	80				Max Eva	aporation Rate	198 #/Hr.
Return	Air Tempe	erature		82	Return Air	r Relative Hu	imidity	60						
Dry Bulb	Temp. MCWB*	DP	Total Hours.* at Condition	Outside Air	Dehumid Coil LAT/Tons	Dehumid Coil Cost	Condenser Heat Available BTUH	Required Supply Air Temp.	No Heat Supply Air Temp.	Cost to Heat Supply Air	Condense Rehea Cred	er Air at it	Condenser Water Heat Credit	Dollars Spent Total
120	75	63.3	0	5,000	62.1/40.5	\$0	608,142	73.7	72.1	\$0	\$0		\$0	\$0
97	76	67.6	6	5,000	60.5/46.9	\$33	703,896	74.8	69.6	\$1	\$1		\$1.66	\$31.34
92	74	66.4	58	5,000	60.9/45	\$307	676,459	75.8	68.7	\$11	\$11		\$16.06	\$290.50
87	72	65.4	165	5,000	61.3/43.5	\$842	652,889	76.9	67.8	\$41	\$41		\$45.68	\$796.50
82	70	64.5	324	5,000	61.7/42.1	\$1,602	632,694	77.9	66.8	\$98	\$98		\$89.70	\$1,511.98
77	67	62.0	487	5,000	62.5/38.7	\$2,211	580,941	79.0	66.2	\$169	\$169	9	\$134.82	\$2,075.71
72	64	59.6	681	5,000	63.3/35.7	\$2,853	536,244	80.0	65.5	\$268	\$268	3	\$135.71	\$2,665.17
67	61	57.4	759	5,000	63.9/33.2	\$2,955	498,342	81.1	64.7	\$337	\$337	7	\$42.41	\$2,819.62
62	57	53.7	700	5,000	64.8/29.2	\$2,397	438,289	82.1	64.2	\$341	\$341	1	\$0	\$2,354.74
57	52	48.0	604	5,000	66/24.1	\$1,711	362,567	83.2	63.8	\$318	\$374	1	\$0	\$1,754.98
52	47	42.3	581	5,000	82/0	\$0	0	84.2	74.5	\$153	\$0		\$0	\$153.47
47	43	38.7	565	5,000	82/0	\$0	0	85.3	73.3	\$185	\$0		\$0	\$184.55
42	38	32.8	572	5,000	82/0	\$0	0	86.3	72.0	\$223	\$0		\$0	\$222.57
37	34	29.9	725	5,000	82/0	\$0	0	87.4	70.8	\$327	\$0		\$0	\$327.40
32	30	27.0	869	5,000	82/0	\$0	0	88.5	69.5	\$447	\$0		\$0	\$446.72
27	25	21.3	589	5,000	82/0	\$0	0	89.5	68.3	\$340	\$0		\$0	\$339.58
22	21	18.9	371	5,000	82/0	\$0	0	90.6	67.0	\$237	\$0		\$0	\$237.08
17	16	13.3	231	5,000	82/0	\$0	0	91.6	65.8	\$162	\$0		\$0	\$162.05
12	11	7.6	164	5,000	82/0	\$0	0	92.7	64.5	\$125	\$0		\$0	\$125.29
7	6	1.6	115	5,000	82/0	\$0	0	93.7	63.3	\$95	\$0		\$0	\$95.04
2	1	-4.7	89	5,000	82/0	\$0	0	94.8	62.0	\$79	\$0		\$0	\$79.11
-3	-3	-81.9	93	5,000	82/0	\$0	0	95.8	60.8	\$88	\$0		\$0	\$88.48
											Δ	nnual F	Energy Evnence	16 761 40

*Weather data used for Chicago, IL. Heat exchanger effectiveness is based on dry sensible heat transfer. Condensing within the heat exchanger will increase performance.

Operating Cost of Wringer Pool Product

Locatio Supply Require Summe Return Return	n CFM ed Supply A er Outside Air Tempe Air Relatiy	Air Hun Air rature re Hum	nidity Ratio idity	Washington D 20,000 0.0121 5,000 82 60	C Change Heat Re Cooling Cost of Efficience Outside	Over Dew Po covery Effect Fuel Cost Heating Fuel cy of Fuel Co Air CFM at (oint tiveness onversion (Hea Change Over	58.3 65.0 \$0.100/k \$1.00/1,0 80 12.000	wh=\$9.77/Millio 000,000 BTU	on BTU of Cod	bling Output Win Max DX	Cooling Equipment C.O.P 3 Summer Building Load 4 Winter Building Load 4 Max Evaporation Rate 1 DX LAT 5				
Dry Bulb	Temp. MCWB*	DP	Total Hours.* at Condition	Outside Air	Dehumid Coil Tons	Dehumid Coil Cost	Condenser Heat Available BTUH	Required Supply Air Temp.	No Heat Supply Air Temp. F°	Cost to Heat Supply Air	Condenser A Reheat Credit	ir Condenser Water Heat Credit	Dollars Spent Total			
120	77	67.1	0	5,000	43.66	\$0	327,485	79.2	76.4	\$0	\$0	\$0	\$0			
97	76	67.6	6	5,000	41.89	\$29	327,485	79.2	76.4	\$1	\$1	\$0	\$29.46			
92	74	66.4	72	5,000	38.40	\$324	327,485	80.4	76.4	\$8	\$8	\$0	\$324.01			
87	/2	65.4	243	5,000	35.05	\$998	327,485	80.9	76.4	\$30	\$30	\$0	\$998.35			
82	70	64.5	428	5,000	31.86	\$1,598	327,485	81.5	76.4	\$59	\$59	\$0	\$1,598.11			
//	68	63.7	631	5,000	28.80	\$2,130	327,485	82.1	76.4	\$97	\$97	\$0	\$2,130.02			
72	66	63.0	925	5,000	25.88	\$2,805	327,485	82.7	76.4	\$157	\$157	\$0	\$2,805.21			
67	61	57.4	858	10,001	0.00	\$0	0	83.2	79.9	\$77	\$0	\$0	\$77.48			
62	56	51.8	755	6,779	0.00	\$0	0	83.8	80.1	\$76	\$0	\$0	\$75.73			
57	31	40.0	000	0,320	0.00	\$U \$0	0	84.4	80.1	\$79	\$0	\$0	\$79.01			
17	47	40.0	0/1	4,508	0.00	\$0	0	04.9 95.5	80.1	\$00 \$100	\$0	\$0	\$07.90			
47	42	30.3	724	2 7 9 1	0.00	\$0 \$0	0	86.1	70.0	\$100 \$100	\$0	\$0	\$100.24			
97	33	27.2	709	3,701	0.00	\$0	0	86.7	79.5	¢123	\$0	\$0	\$123.42			
32	29	2/ 1	621	3,492	0.00	0.0	0	87.2	79.6	\$129	\$0	\$0	\$120.15			
27	24	17.8	362	3 295	0.00	\$0	0	87.8	79.5	\$82	\$0	\$0	\$81.80			
22	19	11.0	212	3 152	0.00	\$0	0	88.4	79.4	\$52	\$0	\$0	\$51.82			
17	15	89	101	3 117	0.00	\$0	0	88.9	79.2	\$27	\$0	\$0	\$26.77			
12	10	2.0	51	3.030	0.00	\$0	0	89.5	79.0	\$14	\$0	\$0	\$14.49			
7	6	1.6	13	3.026	0.00	\$0	0	90.1	78.8	\$4	\$0	\$0	\$3.97			
2	1	-4.7	1	2,971	0.00	\$0	0	90.6	78.7	\$0	\$0	\$0	\$0.32			
-3	-4	-81.9	0	2.843	0.00	\$0	0	91.2	78.6	\$0	\$0	\$0	\$0			
				,							Ann	ial Energy Expens	o \$8 870 54			

Operating Cost of Conventional Refrigeration-Based Pool Dehumidifier as Comparison

Locati Supply Requir Min Or Return	on / CFM red Supply utside Air n Air Tempo	Air Hu erature	midity Ratio	Washington DC Heat Recovery Effectiveness Coling Fuel Cost 20,000 Cooling Fuel Cost S 0.0.121 Cost of Heating Fuel S 5,000 Efficiency of Fuel Conversion (Heating) S 82 Return Air Relative Humidity S					0 \$0.100/kwh=\$9.77/Million BTU of Cooling Input \$1.00/1,000,000 BTU 80 60 Cooling Equipment C.O.P Summer Building Load Winter Building Load Max Evaporation Rate 198					
Dry Bulb	Temp. MCWB*	DP	Total Hours.* at Condition	Outside Air	Dehumid Coil Tons	Dehumid Coil Cost	Condenser Heat Available BTUH	Required Supply Air Temp.	No Heat Supply Air Temp. F°	Cost to Heat Supply Air	Condenser Air Reheat Credit	Condenser Water Heat Credit	Dollars Spent Total	
120	75	63.3	0	5,000	62.1/40.5	\$0	608,142	73.7	72.1	\$0	\$0	\$0	\$0	
97	76	67.6	6	5,000	60.5/46.9	\$33	703,896	74.8	69.6	\$1	\$1	\$1.66	\$31.34	
92	74	66.4	72	5,000	60.9/45	\$381	676,459	75.8	67.8	\$14	\$14	\$19.93	\$360.62	
87	72	65.4	243	5,000	61.3/43.5	\$1,240	652,889	76.9	66.8	\$60	\$60	\$67.25	\$1,172.33	
82	70	64.5	428	5,000	61.7/42.1	\$2,116	632,694	77.9	65.8	\$129	\$129	\$118.49	\$1,997.31	
77	68	63.7	631	5,000	62/41	\$3,034	615,350	79.0	64.7	\$226	\$226	\$174.69	\$2,859.12	
72	66	63.0	925	5,000	62.2/40.1	\$4,347	601,517	80.0	64.7	\$385	\$385	\$256.08	\$4,091.29	
67	61	57.4	858	5,000	63.9/33.2	\$3,341	498,342	81.1	64.5	\$381	\$381	\$153.41	\$3,187.39	
62	56	51.8	755	5,000	65.3/27.4	\$2,426	411,333	82.1	64.1	\$361	\$361	\$26.75	\$2,399.73	
57	51	46.0	688	5,000	66.4/22.5	\$1,822	338,867	83.2	63.8	\$357	\$291	\$0	\$1,887.00	
52	46	40.0	671	5,000	82/0	\$0	0	84.2	74.5	\$177	\$0	\$0	\$177.25	
47	42	36.3	665	5,000	82/0	\$0	0	85.3	73.3	\$217	\$0	\$0	\$217.21	
42	37	30.3	734	5,000	82/0	\$0	0	86.3	72.0	\$289	\$0	\$0	\$285.60	
37	33	27.3	708	5,000	82/0	\$0	0	87.4	70.8	\$320	\$0	\$0	\$319.72	
32	29	24.1	621	5,000	82/0	\$0	0	88.5	69.5	\$319	\$0	\$0	\$319.23	
27	24	17.8	362	5,000	82/0	\$0	0	89.5	68.3	\$209	\$0	\$0	\$208.71	
22	19	11.0	212	5,000	82/0	\$0	0	90.6	67.0	\$135	\$0	\$0	\$135.47	
17	15	8.9	101	5,000	82/0	\$0	0	91.6	65.8	\$71	\$0	\$0	\$70.85	
12	10	2.0	51	5,000	82/0	\$0	0	92.7	64.5	\$39	\$0	\$0	\$38.96	
7	6	1.6	13	5,000	82/0	\$0	0	93.7	63.3	\$11	\$0	\$0	\$10.74	
2	1	-4.7	1	5,000	82/0	\$0	0	94.8	62.0	\$1	\$0	\$0	\$0.89	
-3	-4	-81.9	0	5,000	82/0	\$0	0	95.8	60.8	\$0	\$0	\$0	\$0	
				•	•			•			Annual	Energy Expense	\$19,770.76	

*Weather data used for Washington, DC. Heat exchanger effectiveness is based on dry sensible heat transfer. Condensing within the heat exchanger will increase performance.

This two-page comparison allows the designer and end user to make intelligent decisions regarding system configuration and payback criteria. Together, Munters can assist in selecting the correct systems and options to meet the customers needs and desires.

Munters Flexibility

Natatoriums vary in size, shape, and location. Some are low, small rooms, others are atriums of hotels with vast deck areas and high ceilings. Some are totally interior with no transmission load, while others are completly enclosed in glass with large transmission loads. Munters provides a standard or customized product for precise application for any amount and proportion of sensible and latent capacity to meet the load. Munters provides systems with increased outside air throughout the year to improve indoor air quality, while reducing the air to minimum required airflows during extreme temperatures to minimize operating cost.

16900 Jordan Road Selma, TX 78154 Tel: 210-651-5018 or 800-229-8557 Fax: 210-651-9085 www.munters.us